Overview of Central California Winter PM2.5 Data Analysis and Modeling + Issues

[Attainment Demonstration Uncertainty Stemming From Poor Meteorological Model Performance]

Saffet Tanrikulu, Ph.D.
Bay Area Air Quality Management District

June 21-23, 2011, Western Meteorological, Emissions, and Air Quality Modeling Workshop

24-h PM2.5 98th Percentiles: Bay Area

Number of PM2.5 Conducive Days: Bay Area

24-h PM2.5 98th Percentiles: San Joaquin Valley

Population

Annual Avg. NOx Emissions (tpd)

Central California PM2.5 Studies

- 1995 IMS
 - Preparation for CRPAQS
- CRPAQS
 - Supplemental measurements (1999-2001)
 - Intensive measurements (December 2000-January 2001)
 - Data analysis
 - Emissions inventory development
 - Modeling
 - Oversight by Technical and Policy Committees
 - Additional information
 - http://www.arb.ca.gov/airways (CRPAQS)
 - http://www.baaqmd.gov/Divisions/Planning-and-Research/Researchand-Modeling.aspx (BAAQMD activities)

Data Analysis (BAAQMD)

- Meteorological analysis
 - Meteorological conditions impacting PM2.5
 - Winds and temperatures (surface and aloft)
 - Rain and fog
 - Synoptic conditions and atmospheric stability
 - Cluster analysis (PM conduciveness)
- Air quality analysis
 - Chemical speciation (primary vs. secondary PM2.5)
 - Chemical Mass Balance (Source apportionment)
 - Trend analysis
 - C-14 PM filter analysis to quantify ambient new carbon concentrations (wood burning and cooking)

Modeling

BAAQMD modeling - similar to ARB-CRPAQS modeling

- Meteorological modeling
 - MM5 and WRF
 - 36, 12 and 4km horizontal resolutions
 - 30 or 50 vertical layers
- Air quality model
 - CMAQ (AE4 chemistry) and CAMx (wood burning PM2.5)
 - 4km horizontal resolution (covering central California)
 - 15 or 25 vertical layers
 - SAPRC99-AE4 chemical mechanism (CMAQ)
 - Simulation periods: Dec-Jan, 2000-01 and 2006-07

Simulated vs Observed PM2.5

Avg. over four months (Dec-Jan, 2000-01 and 2006-07)

Avg. over 5 exceedance days

Issues

- AQMs generally underestimate PM2.5 in central California
 - They also underestimate ozone there
- The most severe underestimation is during peak episode days when attainment is demonstrated
- Is the problem due to emissions, meteorology or chemistry?
- This problem may exist elsewhere; not a unique central California problem
- Does this problem introduce uncertainty to model sensitivity?

Pattern-Based Model Evaluation

- R1 → Elevated PM days, but rare Bay Area exceedances
- $R2 \rightarrow 80\%$ of 24-h PM Bay Area exceedances
- $R3 \rightarrow 14\%$ of 24-h PM Bay Area exceedances

Example: CMAQ Performance for PM2.5

R1	R2	R2										
R1	R1	R1	R1	R*	R*	R1	R1	R1	R1	R*	R2	R+

R1	R2	R2	R2									
R1	R1	R1	R1	R*	R*	R1	R1	R1	R1	R*	R2	R+
R1	R2	R2	R2									

Original MM5 **Substituted MM5 Uncertainty Concentration difference Evaluation** (20% emission reduction minus base case) Conc. Diff. Fresno San Jose (20% emission reduction/ base case) RRF San Jose

-8

-10

0.9

8.0

0.7

RRF

Summary and Conclusion

- CMAQ simulates moderate winter PM2.5 levels accurately
- Model sensitivity to changes in emissions makes sense, but needs to be verified against observations
- CMAQ underestimates peak PM2.5 levels, mostly due to deficiencies in MM5
- WRF has similar symptoms
- Uncertainty in met models seems an inherent problem.
- Only air quality community simulates meteorology under high pressure conditions
- Most users are model applicants, not researchers
- Collaboration and leadership is much needed